Benchmarking Gradient Based Optimizers' Sensitivity to Learning Rate

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Benchmarking of Hyperparameter Optimizers via Surrogates

Hyperparameter optimization is crucial for achieving peak performance with many machine learning algorithms; however, the evaluation of new optimization techniques on real-world hyperparameter optimization problems can be very expensive. Therefore, experiments are often performed using cheap synthetic test functions with characteristics rather different from those of real benchmarks of interest...

متن کامل

Comparison of Gradient Based and Gradient Enhanced Response Surface Based Optimizers

This paper deals with aerodynamic shape optimization using a high fidelity solver. Due to the computational cost needed to solve the Reynolds-averaged Navier-Stokes equations, the performance of the shape must be improved using very few objective function evaluations despite the high number of design variables. In our framework, the reference algorithm is a quasi-Newton gradient optimizer. An a...

متن کامل

Scaled Gradient Descent Learning Rate

Adaptive behaviour through machine learning is challenging in many real-world applications such as robotics. This is because learning has to be rapid enough to be performed in real time and to avoid damage to the robot. Models using linear function approximation are interesting in such tasks because they offer rapid learning and have small memory and processing requirements. Adalines are a simp...

متن کامل

Reference-shaping adaptive control by using gradient descent optimizers

This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is ...

متن کامل

Learning Rate Adaptation in Stochastic Gradient Descent

The efficient supervised training of artificial neural networks is commonly viewed as the minimization of an error function that depends on the weights of the network. This perspective gives some advantage to the development of effective training algorithms, because the problem of minimizing a function is well known in the field of numerical analysis. Typically, deterministic minimization metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2023

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4318767